ISWK 1	Term-1 Practice Examination	Subject Code No. 241/ BASIC
		SET-1
Roll No.		Candidates must write the Code on the title page of the answer-book.

- Please check that this question paper contains 9 printed pages.
- Please check that this question paper contains 50 questions.
- 20 minutes time has been allotted to read this question paper. The question paper will be distributed at 09.40 a.m. From 09:40 a.m. to 10.00 a.m., the students will read the question paper only and plan a proper strategy to attempt the questions.

Class X

Session: 2021-22, Term - 1

Mathematics Basic (241)

Time Allowed: 90 minutes

Maximum Marks: 40

Date: 02/11/2021

General Instructions:

- 1. The question paper contains three parts A, B and C. Each part is compulsory.
- 2. Section A consists of 20 questions of 1 mark each (MCQ's). Any 16 questions are to be attempted.
- **3.** Section B consists of 20 questions of 1 mark each (MCQ's). Any 16 questions are to be attempted.
- 4. Section C consists of 10 questions based on two CASE STUDIES. Attempt any 8 questions.
- 5. There is NO NEGATIVE marking.

	Section A										
Section A consists of 20 questions. Any 16 questions are to be attempted											
Q.1.	The LCM of smallest composite number and the smallest prime number is										
	A	2	B	1	С	4	D	3			
Q.2.	The distance between the points $(3, -2)$ and $(-3, 2)$ is										
	A	$\sqrt{52}$ units	B	$4\sqrt{10}$ units	С	$2\sqrt{10}$ units	D	40 units			
Q.3.	Sic	les of two similar tria	ngle	es are in the ratio 4	: 9. /	Areas of these trian	gles a	are in the ratio			
	A	4:9	B	2:3	С	81 : 16	D	16:81			
Q.4.	Th	e number of zeroes o	f the	e polynomial p(x) sl	how	n in fig, are					
				x o		x $\longrightarrow x$					
	A	3	B	2	С	1	D	0			
Q.5.	Th	e value of k for which	h the	e equations $3x - y +$	- 8 =	= 0 and 6x + ky = -	16 re	present coincident			
	lin	es, is			[I			
	A	$-\frac{1}{2}$	B	$\frac{1}{2}$	С	2	D	-2			
Q.6.	On of	e card is drawn at rai getting a Jack?	ndon	n from a well – shu	fflec	l deck of 52 cards.	What	is the probability			
	A	$\frac{3}{26}$	B	$\frac{1}{52}$	С	$\frac{1}{13}$	D	$\frac{3}{52}$			
Q.7.	A l pro	bag contains 3 red, 5 bability that the drav	blac vn is	k and 7 white balls not black, is	. A t	oall is drawn from t	he ba	g at random. The			
	Α	$\frac{1}{3}$	B	$\frac{3}{5}$	С	$\frac{1}{2}$	D	$\frac{2}{3}$			

Q.8.	120 can be expressed as a product of its prime factors a												
	A	5 x 8 x 3	B	15 x 2 ³	С	10 x 2 ² x 3	D	5 x 2 ³ x 3					
Q.9.	If t val	If the centre of a circle is (3, 5) and end points of a diameter are (4, 7) and (2, y), then the value of y is											
	A	3	B	-3	С	7	D	4					
Q.10.	The value of θ for which $\cos(10^\circ + \theta) = \sin 30^\circ$, is												
	Α	50°	B	40°	С	80°	D	20°					
Q.11.	HC nu	CF of two numbers is mber is	27 a	nd their LCM is 16	52. If	f one of the number	• is 54	, then the other					
	A	36	B	35	С	9	D	81					
Q.12.	If :	$5 \tan\theta = 12$, then $\frac{13 \text{ s}}{3}$	sinθ 3	is									
	A	2	B	4	С	12	D	1					
Q.13.	Th	e decimal expansion	of $\frac{1}{2}$	$\frac{23}{5\times5^2}$ will terminate	e afte	er how many places	s of d	ecimal?					
	Α	2	B	4	С	5	D	1					
Q.14.	In	A 2 B 4 C 5 D 1 In $\triangle ABC$, if $DE \parallel BC$, then the value of x is $x \wedge x + 3$ D B											
	Α	4	B	2	С	3	D	6					

Q.15.	The quadratic polynomial whose sum of zeroes is 3 and product of zeroes is -2 is										
	A	$x^2 + 3x - 2$	B	$x^2 - 2x + 3$	С	$x^2 - 3x + 2$	D	$x^2 - 3x - 2$			
Q.16	Ca the	Cards are marked with numbers 1 to 25 are placed in the box and mixed thoroughly. What is the probability of getting a number divisible by 5?									
	A	1	B	0	С	$\frac{1}{25}$	D	$\frac{1}{5}$			
Q.17.	If 2 and α are the zeroes of $2x^2 - 6x + 2$, then the value of α is										
	A	2	B	3	С	1	D	5			
Q.18.	Th	e pair of equations 42	x + 6	5y = 9 and $2x + 3y = 3$	= 6 ł	nas					
	A	no solution	B	many solutions	С	two solutions	D	one solution			
Q.19.	If s	$\sin\theta = \frac{1}{3}$, the value of	2 <i>co</i>	$t^2\theta + 2$ is							
	A	16	B	20	С	12	D	18			
Q.20.	Th	e area of the square t	hat c	an be inscribed in a	a cir	cle of radius 8cm is					
	A	256 <i>cm</i> ²	B	$128 cm^2$	С	$64\sqrt{2}cm^2$	D	$64 cm^2$			
				Section 1	B						
Se	ectio	on B consists of 20 q	uest	ions of 1 mark eac	ch. A	ny 16 questions ar	e to	be attempted			
Q.21.	Th	e zeroes of the quad	ratic	polynomial $6x^2 - 3$	3 – 7	x are					
	A	$\frac{3}{2}, -\frac{1}{3}$	В	$\frac{2}{3}, \frac{1}{3}$	C	$\frac{3}{5}, -\frac{3}{7}$	D	$\frac{1}{3}, -\frac{1}{3}$			
Q.22.	Th	e area of the sector of	of a c	eircle with radius 14	1cm	and central angle 45	5° is				
	Α	76 <i>cm</i> ²	B	77 <i>cm</i> ²	C	66 <i>cm</i> ²	D	$55 cm^{2}$			
Q.23.	Th	e largest number wh	ich c	livides 70 and 125	leavi	ing remainders 5 and	d 8 re	espectively is			
	A	13	B	35	C	875	D	1750			

Q.24	144 cartons of Coke cans and 90 cartons of Pepsi cans are to be stacked in a canteen. If each									
	stack is of the same height and is to contain cartons of the same drink, what would be the									
	greatest number of cartons each stack would have?									
	A	36	B	18	С	45	D	12		
Q.25.	If a pair of equations is consistent, then the graph of the lines will be									
	A	parallel	B	intersecting	С	intersecting or coincident	D	always coincident		
Q.26.	Th	e father's age is six t	times	s his son's age. Fou	r yea	ars hence, the age of	fath	ner will be four		
	tim	nes his son's age. Th	en th	e present age of fat	her	İS				
	A	40	B	30	С	42	D	36		
Q.27.	Aj	pendulum swings thr	ougl	n an angle of 30° an	d de	escribes an arc 8.8cm	n is l	length. The length		
	of	the pendulum is								
		17.0	D	160						
	A	1/.2cm	В	16.8cm	C	16.4cm	D	18.6cm		
Q.28.	A If a	α and β are the zeroe	B es of	the polynomial x^2	C	16.4cm – 4, then the value o	\mathbf{D} f $\frac{1}{\alpha}$	$\frac{18.6 \text{cm}}{+\frac{1}{\beta} - \alpha \beta \text{ is}}$		
Q.28.	A If a A	$\alpha \text{ and } \beta \text{ are the zeroe}$ $\frac{15}{4}$	B es of B	the polynomial x^2 $\frac{-15}{4}$	C - x - C	16.4cm - 4, then the value o 4	$\begin{array}{c} \mathbf{D} \\ f \frac{1}{\alpha} \end{array}$	18.6cm $+ \frac{1}{\beta} - \alpha \beta \text{ is}$ 15		
Q.28. Q.29	A If a A If a	α and β are the zeroe $\frac{15}{4}$ $2x + 3y = 11 \text{ and } x - \beta$	B es of B 2y =	T6.8cm the polynomial x^2 $\frac{-15}{4}$ = -12, then the value	C - x - C e of	16.4cm - 4, then the value o 4 'm' for which y = m	$\frac{\mathbf{D}}{\mathbf{f}} \frac{1}{\alpha}$ \mathbf{D} \mathbf{D}	18.6cm $+ \frac{1}{\beta} - \alpha \beta \text{ is}$ 15 3 is		
Q.28. Q.29	A If a A If 2 A	α and β are the zeroe $\frac{15}{4}$ $2x + 3y = 11 \text{ and } x - 1$	B B 2y = B	$\frac{-15}{4}$ = -12, then the value -1	C - x - C e of C	16.4 cm $-4, then the value o$ 4 'm' for which y = m 2	$\begin{array}{c} \mathbf{D} \\ \mathbf{f} \frac{1}{\alpha} \\ \mathbf{D} \\ \mathbf{D} \\ \mathbf{D} \\ \mathbf{D} \end{array}$	18.6cm $+\frac{1}{\beta} - \alpha \beta \text{ is}$ 15 3 is -2		
Q.28. Q.29 Q.30.	A If a A If 2 A Th	α and β are the zeroe $\frac{15}{4}$ $2x + 3y = 11 \text{ and } x - 1$ e value of $(1 + tan^2)$	B es of B 2y = B θ)(1	$\frac{-15}{4}$ $= -12, \text{ then the value}$ -1 $-\sin \theta)(1 + \sin \theta) \text{ i}$	$\frac{\mathbf{C}}{\mathbf{C}}$	16.4 cm $-4, then the value o$ 4 'm' for which y = m 2	$\frac{\mathbf{D}}{\mathbf{f}} \frac{1}{\alpha}$ \mathbf{D} \mathbf{D} \mathbf{D}	18.6cm $+\frac{1}{\beta} - \alpha \beta \text{ is}$ 15 3 is -2		
Q.28. Q.29 Q.30.	A If a A If 2 A Th A	α and β are the zeroe $\frac{15}{4}$ $2x + 3y = 11 \text{ and } x - 1$ 1 $e \text{ value of } (1 + tan^2)$	B es of B 2y = B θ)(1 B	$\frac{-15}{4}$ $= -12, \text{ then the value}$ -1 $-\sin \theta)(1 + \sin \theta) \text{ i}$	C - X - C e of C s C	16.4 cm $-4, then the value o$ 4 'm' for which y = m 2 2	$ f \frac{1}{\alpha} $ $ D $ $ D $ $ D $	$\frac{18.6 \text{cm}}{+\frac{1}{\beta} - \alpha \beta \text{ is}}$ $\frac{15}{3 \text{ is}}$ -2 8		
Q.28. Q.29 Q.30. Q.31	AIf aAIf aAThAIf sthe	α and β are the zeroe $\frac{15}{4}$ $2x + 3y = 11 \text{ and } x - 1$ 1 α and β are the zeroe	B B C $2y =$ B θ)(1 B ens c s and	the polynomial x^2 $\frac{-15}{4}$ = -12, then the value -1 - sin θ)(1 + sin θ) i 1 osts ₹410, whereas four pens would be	$\begin{array}{c} \mathbf{C} \\ -\mathbf{x} - \mathbf{c} \\ \mathbf$	16.4 cm $-4, then the value o$ 4 'm' for which y = m 2 2 e books and seven points	$\frac{\mathbf{D}}{\mathbf{f}} = \frac{1}{\alpha}$ \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D}	18.6cm $+\frac{1}{\beta} - \alpha \beta \text{ is}$ 15 3 is -2 8 $\cos ts ₹334, then$		

Q.32.	If $\frac{2}{x} + \frac{3}{y} = 13$ and $\frac{5}{x} - \frac{4}{y} = -2$, then x + y is equal to									
	Α	$\frac{1}{6}$	B	$-\frac{1}{6}$	С	<u>5</u> 6	D	_ <u>5</u> _6		
Q.33	The perimeter of a quadrant of a circle of radius $\frac{7}{2}$ cm is [Take $\pi = \frac{22}{7}$]									
	A	12.5 cm	B	3.5 cm	С	7.5 cm	D	5.5 cm		
Q.34	Which of the following cannot be the probability of an event?									
	A	$\frac{1}{4}$	B	0	С	$\frac{1}{2}$	D	0.8		
Q.35	If res	$sin(A - B) = \frac{1}{2}, cos($	(A +	B) = $\frac{1}{2}$; 0° < A + I	3 ≤	90°, $A > B$, then A	and	l B are		
	A	45°, 15°	B	60°, 30°	С	45°, 30°	D	30°, 15°		
Q.36	Th eq	ne radii of two circles ual to sum of the are	are as of	8cm and 6cm respe two circles is	ctiv	ely. The radius of th	e cir	cle having area		
	A	5cm	B	10cm	С	12cm	D	15cm		
Q.37	If rat	the point $P(k, 0)$ divition in the value of $1:2$, then the value of $1:2$.	des t ue of	he line segment join	ning	the points $A(2, -2)$	and	B(-7, 4) in the		
	A	1	B	2	С	-1	D	-2		

Q.38	In the given fig, MN BC and AM : MB = 1 : 2, then $\frac{ar (\Delta AMN)}{ar (\Delta ABC)}$ is									
	A	$\frac{1}{4}$	B	$\frac{1}{9}$	С	$\frac{1}{3}$	D	$\frac{1}{2}$		
Q.39	<u>si</u> 20	$\frac{n \theta - 2sin^3 \theta}{cos^3 \theta - cos \theta} =$								
	A	sinθ	B	cosθ	С	tanθ	D	cotθ		
Q.40	If	If a pair of dice is thrown, the probability of getting a sum of 10 is								
	A	$\frac{1}{12}$	B	$\frac{1}{36}$	С	$\frac{1}{9}$	D	$\frac{1}{4}$		

SECTION C

Case study based questions

Section C consists of 10 questions of 1 mark each. Any 8 questions are to be attempted.

CASE STUDY 1:

Resident Welfare Association (RWA) of a Gulmohar Society in Delhi have installed three electric poles A, B and C in a society's common park. Despite these three poles, some parts of the park are still in dark. So, RWA decides to have one more electric pole D in the park.

The park can be modelled as a coordinate system given below.

Q.43	Find the position of the fourth pole D so that four points A, B C and D form a parallelogram.											
	Α	(5, 2)	B	(1, 5)	С	(1, 4)	D	(2, 5)				
Q.44	What is the distance between poles A and C?											
	Α	$6\sqrt{2}$ units	B	$3\sqrt{2}$ units	С	$6\sqrt{3}$ units	D	$3\sqrt{3}$ units				
Q.45	What is the distance between poles B and D?											
	A	$2\sqrt{3}$ units	B	$\sqrt{28}$ units	С	$6\sqrt{3}$ units	D	$\sqrt{26}$ units				
	distant the sa his ho	nce of the foot of ame point, Akshouse.	of the nay tu	e ladder from the bo urns the ladder to th	ttom c e oppo	of the ground was 3n osite side so that it re $A = \frac{A}{B} = \frac{3}{3} \text{ m} + \frac{C}{C}$	n. Keej eached	the ground. The ping its foot at the window of				
Q.46	The t	heorem used to	find	the length of the lac	dder 18	5	[
	A	Thales theorem	B	Converse of Thales theorem	C	Pythagoras theorem	D	Converse of Pythagoras theorem				
Q.47	The l	ength of the lac	lder,	in metre is								
	Α	4m	B	5m	С	9m	D	2m				

Q.48	If the window of the house is 3m above the ground, then the distance of the point C from D is											
	А	3m	B	4m	С	5m	D	3.5m				
Q.49	Q.49 Which of the following does not form a Pythagorean triplet?											
	Α	(7, 24, 25)	В	(15, 8, 17)	С	(5, 12, 13)	D	(21, 20, 28)				
Q.50	Q.50 If an isosceles right triangle PQR is right angled at P, then											
	A	A $QR^2 = 2PQ^2$ B $QP^2 = 2PR^2$ C $QP^2 = 2QR^2$ D $PR^2 = 2QR^2$										
-		•		*****	***		•	•				